Measurements of A_{LL}^{π0} in p+p
Collisions at √s = 200 GeV
and
Their Impact on Determination of the Gluon Spin in the Proton

Andrew Manion
for the PHENIX Collaboration
21st International Symposium on Spin Physics
Beijing, China

Double Longitudinal Spin Asymmetries

- In p+p scattering:
 - proton spin parallel (positive helicity) or antiparallel with its momentum vector:

 "Double Longitudinal Spin Asymmetry" then defined in terms of cross-sections:

$$A_{LL} = \frac{(\sigma^{++} + \sigma^{--}) - (\sigma^{+-} + \sigma^{-+})}{(\sigma^{++} + \sigma^{--}) + (\sigma^{+-} + \sigma^{-+})}$$

 Ultimately want to connect to spin of proton constituents, e.g.:

Sum Rules

- Charge sum rule
 - assumes zero strangeness

$$Q_{proton} = 1 = \int_0^1 dx \ x \left(\frac{2}{3} [u(x) - \bar{u}(x)] - \frac{1}{3} [d(x) - \bar{d}(x)] \right)$$

- Momentum sum rule
 - quark term <50% of momentum
 - gluon contributes >50%

$$P_{proton} = P_{quark} + P_{gluon}$$

$$= \int_0^1 dx \ x \left([u(x) + \bar{u}(x)] + [d(x) + \bar{d}(x)] + [s(x) + \bar{s}(x)] \right) + \int_0^1 dx \ x g(x)$$

- Spin sum rule
 - o quark spin, gluon spin, OAM
 - DIS experiments find quark spin contribution only 25-35%

$$S_{proton} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

$$\Delta G = \int_0^1 dx \ \Delta g(x), \quad \Delta \Sigma = \int_0^1 dx \ \left(\left[\Delta u(x) + \Delta \bar{u}(x) \right] + \left[\Delta d(x) + \Delta \bar{d}(x) \right] + \left[\Delta s(x) + \Delta \bar{s}(x) \right] \right)$$

Factorization in p+p

polarized PDF

- How to interpret A₁₁?
- Known a priori:
 - parton-parton cross sections (calculable in pQCD)
 - o including gluon scattering!
- Ingredients from other experiments:
 - Fragmentation functions (from e+e- scattering)
 - quark (p)PDFs
- Assume "factorization:"

$$A_{LL} = \frac{\sum_{abc} \Delta f_a(x_1, \mu_F^2) \otimes \Delta f_b(x_2, \mu_F^2) \otimes \Delta \sigma^{a+b \to c+X}(x_1, x_2, p_c, \mu_F^2, \mu_R^2, \mu_{FF}^2) \otimes D_c^h(z, \mu_{FF}^2)}{\sum_{abc} f_a(x_1, \mu_F^2) \otimes f_b(x_2, \mu_F^2) \otimes \sigma^{a+b \to c+X}(x_1, x_2, p_c, \mu_F^2, \mu_R^2, \mu_{FF}^2) \otimes D_c^h(z, \mu_{FF}^2)}$$
partonic reaction
$$a+b \to c$$
partonic x-sect
fragmentation function

 Factorization verified in each case by checking denominator against absolute x-section

RHIC: Relativisitic Heavy Ion Collider

Variable√s: 62.4, 200, 500 GeV
 most of this talk
 Next talk

- Up to 120 proton bunches rotating in each ring
- Polarization can be chosen on a bunch-by-bunch basis, e.g.

- Spin Rotators allow polarization axis to be made transverse, longitudinal, or radial at different experiments
- Overall polarization P_B, P_Y, measured precisely by pCarbon polarimeters, and normalized to accurate Hydrogen-jet polarimeter meas.
- Polarization axis must be measured individually at each experiment

The PHENIX Experiment at RHIC

Central arms

- \circ | η | < 0.375, $\Delta \phi$ = (π /2) x 2
- Tracking
 - **D**rift **C**hamber (Multi-Wire Proportional)
 - Pad Chambers
- Particle ID
 - Ring Imaging Cherenkov detector
 - Hadron Blind Detector (Gas Electron Multiplier) in '09 and '10
- EM Calorimetry
 - Two separate technologies for cross-check
 - Lead-Scintillator (**PbSc**)
 - sampling calorimeter
 - Lead-Glass (**PbSc**)
 - Cherenkov radiation calorimeter

Forward arms

- Tracking, Calorimetry, Muon Identification
- Minbias detectors
 - Zero Degree Calorimeter:
 - $\Delta \eta = \pm (3.1 \text{ to } 3.9), |z| = 18\text{m}$
 - outside of bending field, sees neutrals
 - Beam-Beam Counter: $|\Delta \eta| = > 6$, |z| = 1.4m
 - reconstruct collision z-vertex online with
 ~5cm resolution

A_{11} in π^0 Production

- π^0 is the highest statistics PHENIX central arm probe
 - o decay photon separation out to $p_{\scriptscriptstyle T}$ of 10GeV/c
- q-g and g-g sub-processes at low p_T
- \rightarrow excellent constraint of ΔG

 Agreement with pQCD means we can use (unpolarized) factorization in interpreting our A₁₁

Analysis Technique

- Analyze through the γγ decay channel
 - \circ B.R. 99% for π^0
 - Can also analyze η meson, 39% B.R.
- Count signal region (red) and sideband region (blue) counts in ++ and +- helicity crossings:

$$A_{LL} = \frac{1}{P_B P_Y} \left(\frac{N^{++} - RN^{+-}}{N^{++} + RN^{+-}} \right), R \approx \frac{N_{BBC}^{++}}{N_{BBC}^{+-}}$$

- Relative Luminosity R is measured using minbias BBC scalars
 - largest systematic uncertainty from confidence that BBC sees zero asymmetry
- Interpolate combinatorial B.G. shape under peak to get background fraction "r"

$$A_{LL}^{\pi^0} = rac{A_{LL}^{signal} - rA_{LL}^{sides}}{(1-r)}$$

Advantage:

- mass peak
 -> directly count π⁰s
- choose cuts to minimize total uncertainty

Systematic Uncertainties

- Polarization measurement
 - Scale uncertainty, mostly from molecular hydrogen contamination of H-jet target
- Event overlap in the EMÇal
 - creates non-zero BG asymmetry that can depend on myy
 - controlled by cuts/careful binning of analysis
- Relative Luminosity

$$A_{LL} = \frac{1}{P_B P_Y} \left(\frac{N^{++} - RN^{+-}}{N^{++} + RN^{+-}} \right) \quad R \approx \frac{N_{BBC}^{++}}{N_{BBC}^{+-}}$$

But is the BBC also sensitive to a physics A_{LL}?

- Cross-check Asymmetries
 - Measurements of parity violating, 180 rotational asymmetries should be zero

Event Overlap in EMCal Readout

- Events from previous crossings contribute background to current crossing
- Certain spin patterns follow empty bunches
 - see less of this BG than other spin patterns
 - leads to false BG asymmetry
 - can have m_{vv} dependence
- Strategy:
 - cuts to eliminate m_{yy} dependence analyze spin patterns separately

Event Overlap in EMCal Readout

- Time of Flight cut
 - present crossing: σ_γ
 - previous mixed crossing: $\sigma_z + \sigma_{t0}$
 - → ToF cut more effective at removing this type of BG
- Trigger requirement also helps (guarantees one photon of pair is in the current crossing)
- Check for remaining background A_{LL} dependence vs. mass to justify interpolation into peak region

Determination of Syst. Uncert. on RL

i.e., what if our relative luminosity detector DOES see some spin asymmetry?

- We use our minimum bias BBC (Beam Beam Counter) to measure R
- ...and compare it with a detector past the DX magnetic field
 - ZDC: Zero Degree Calorimeter, no charged particles
- We then assume the different physics they sample can't have the same asymmetry
 - so any non-zero asymm. in BBC should be apparent
- Compare the two results to get the best estimate of systematic:

$$A_{syst} = \frac{1}{P_B P_Y} \frac{\left(\frac{N_{ZDC}}{N_{BBC}}\right)^{++} - \left(\frac{N_{ZDC}}{N_{BBC}}\right)^{+-}}{\left(\frac{N_{ZDC}}{N_{BBC}}\right)^{++} - \left(\frac{N_{ZDC}}{N_{BBC}}\right)^{+-}}$$

RL Syst. Throughout the Years

Run Year	A_{LL}^{R} (10^{-3})	$\frac{\Delta A_{LL}^R(\text{stat+syst})}{(10^{-3})}$
2005	0.42	0.23
2006	0.49	0.25
2009	1.18	0.21

- Take maximum overlap in A_{LL}^R as correlated
 Take also uncertainty on A_{LL}^R as part of systematic
 - 2009 total RL systematic uncertainty: 1.4e⁻³

Non-physical Asymmetries

- Non-physical "double-spin" asymmetries seen in longitudinal running between the BBC and ZDC:
 - Parity violating asymmetry:

$$A_{PV} = 1.4 \pm 0.1 \times 10^{-3} \text{ in } 2009$$

o 180° rotation of the experiment:

$$A_{180} = 82.3 \pm 0.1 \times 10^{-3} \text{ in } 2009$$

Can these asymmetries be explained?

Model for Generation of Various False Asymmetries

- A left-right production asymmetry
- Coupled with a beam angle (or offset)
 - moves the high or low production side off the detector
 - generates a false asymmetry

Predictions of Model

	€ _{++ to}	€ _{+- to -+}	€ _{++ to +-}	€ to -+
Collinear Angle	$= (P_B + P_Y) \delta$		= P _Y δ	= -P _Y δ
Offsets	= 0	$= (P_B + P_Y) \epsilon$	= -P _Υ ε	= P _Υ ε
Boosts	= 0	$= (P_B + P_Y) \epsilon$	= -P _Υ ε	= P _Υ ε

- Key Feature: linear dependence on polarization
- δ, ε: acceptance modification factors, functions of angle, offset, or boost
- Important point: cross-check asymmetries which should be zero can be large under this effect!
 - failure to understand them would lead to additional systematic uncertainties

Run 2012 Collinear Beam Angle Scan

- Predicted to have largest variation in the Run12 scan of collinear beam angles
- Slope about ½ of simulation prediction

- Should not have changed much during scan
 - its dependence is on boosts and offsets

The End Result(s)

- PRD90 (2014) 012007
- arXiv:1402.6296

- 2009 measurement doubles existing statistics for η and π⁰ asymmetries
- RL syst. larger than in previous runs
- η not included in global analysis

Comparison to Global Analyses

- Combined PHENIX results alongside various global analyses
 - DSSV08: DIS + SIDIS + PHENIX + STAR (up to 2006)
 - $\Delta G_{DSSV08}^{[0.05,0.2]} = 0.005_{-0.164}^{+0.129}$
 - GRSV: older DIS-only analysis
 - BB10: DIS-only analysis
 - NNPDF: DIS + prelim. STAR W A_I
 - uses neural networks instead of PDF functional form
 - LSS10: DIS+SIDIS analysis

Adding 2009 PHENIX Data, Effect of RL Systematic Uncert.

- Added 2009 PHENIX π⁰ A₁₁ to the DSSV08 analysis
 - o along with updates of some prelim data to final
- DSSV08 global analysis did not include systematic uncertainties from the experiments
- Effect of shifting only PHENIX π⁰ A_{LL} up or down by its total systematic uncertainty
 - dominated by systematic uncertainty on relative luminosity

Adding 2009 PHENIX Data, Effect of RL Systematic Uncert.

- Results of adding 2009 PHENIX π⁰ A₁₁ to the DSSV08 analysis
 - o along with updates of some prelim data to final:

$$\Delta G^{[0.05,0.2]} = 0.06^{+0.11}_{-0.15}$$

vs. previously:

$$\Delta G_{DSSV08}^{[0.05,0.2]} = 0.005_{-0.164}^{+0.129}$$

Conclusions

- 2009 PHENIX and STAR final data already swiftly included in the DSSV global analysis
 - important to fully treat experimental systematic uncertainties to get the full picture (plus theoretical uncertainties)
 - Other final states + 500 GeV datasets (I. Yoon, next talk) also currently available or under analysis
 - Not only gives us more information on ∆G, but our best test of factorization

Proton Sub-Structure & Parton Scattering

- High energy scattering with a nucleon (proton) probes the substructure
 - scattering with individual quarks, antiquarks, and gluons (partons)

DIS:

• p+p: p_1 proton $f_b(x_b)$ parton b $x_b p_1$ p_1 p_2 p_2 p_3 p_4 p_4 p_4 p_5 p_6 p_6

- Parton Distribution Functions (PDFs), $f_i(x)$
 - describe statistical distribution of partons with momentum fraction

- polarized PDFs, $\Delta f_i(x)$
 - take into account spin along proton's spin axis

Transverse Spin Asymmetry

 A_{N}

- No physics A_{LL}s we are familiar with in the ZDC or BBC
- But we do know of a transverse, phi-dependent, forward, single-spin asymmetry in NEUTRON PRODUCTION
 - transverse: Goes away for longitudinally polarized beams (local polarimetry)
 - phi-dependent: integrates out over all of phi
 - forward: backward asymmetry 0; polarization of other beam irrelevant
 - single-spin: scales as polarization P
 (compared to P² for double spin asymmetries like A_{II})

+ Beam Geometry

- Beams traverse IRs in "zero" magnetic field region
 - straight paths
- Intersection geometry of beams can be decomposed into three components (x 2 planes)
 - Collinear Angle:Offset:Boost:

Run 12 Collinear Beam Angle Scan

- Under model, these two yellow beam asymmetries should be equal and opposite
- Slopes equal and opposite, but not intercepts

- Same logic applies to blue beam asymmetries
- both yellow and blue asymmetries average to ~2e-3